Industrial use of cobalt as catalyst

Systematic title based on use descriptor

SU3 (Industrial use), SU8, SU9, SU10
PC19, PC20, PC21, ERC1, ERC4, ERC6a, ERC6b
(appropriate PROCs are given in Section 2 below)

2. Operational conditions and risk management measures

<table>
<thead>
<tr>
<th>Workplace</th>
<th>Involved task</th>
<th>Involved PROCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of catalyst</td>
<td>Loading/unloading, reaction</td>
<td>1, 2, 3, 4, 8a, 8b, 9, 22</td>
</tr>
<tr>
<td>Use of catalyst for the production of other catalysts containing cobalt compounds</td>
<td>Storage, delivery, transfer, conveying, loading, drying, mixing, screening, reduction, impregnation, calcination, stabilisation, coating, filling, unloading, forming, sulfiding, cleaning, maintenance, packaging</td>
<td>1, 2, 3, 4, 8a, 8b, 9, 14, 22</td>
</tr>
</tbody>
</table>

2.1 Control of workers exposure

Product characteristics

<table>
<thead>
<tr>
<th>Workplace</th>
<th>Use in preparation and content in preparation</th>
<th>Physical form of the product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of catalyst</td>
<td>No restriction</td>
<td>Powder, Shaped</td>
</tr>
<tr>
<td>Use of catalyst for the production of other catalysts containing cobalt compounds</td>
<td>No restriction</td>
<td>Various (Powder, Shaped)</td>
</tr>
</tbody>
</table>

Amounts used

No restriction.

Frequency and duration of use/exposure

No restriction.

Human factors not influenced by risk management

The shift breathing volume 10 m³/8 h (full shift).

Other given operational conditions affecting workers exposure

Room volume >1,000 m³; process temperature < 160°C (for closed process < 600°C), process pressure no restriction for all workplaces. Use of catalyst - Indoor and outdoor use, other workplaces - Indoor use.

Technical conditions and measures at process level (source) to prevent release

<table>
<thead>
<tr>
<th>Workplace</th>
<th>Level of containment</th>
<th>Level of segregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of catalyst</td>
<td>Automation and complete enclosure of powder processing and transfer, handling and filling operations are not likely to give rise to significant exposures to inhalable cobalt-containing powder or dust.</td>
<td>No measures required</td>
</tr>
<tr>
<td>Use of catalyst for the production of other catalysts containing cobalt compounds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical conditions and measures to control dispersion from source towards the worker

Localised controls (LC) are required for all workplaces (Local exhaust recommended, efficiency up to 90 %). Level of separation if required see frequency and duration of exposure section. Installation of ventilated (positive pressure) control rooms can also reduce exposure. Additional information: Any localised controls have to be applied considering the emission potential of the material handled as well as the release potential resulting from the containment and level of automation (i.e. semi- and fully automated) of the conducted processes.

Organisational measures to prevent/limit releases, dispersion and exposure

Additional information See Section: 7, 8, 11 (SDS).

Conditions and measures related to personal protection, hygiene and health evaluation

Specification of respiratory protective equipment (RPE) are recommended for all workplaces - FFP3 mask conforming to EN143 or EN149 during operations where exposure to dust cannot be excluded with APF = 20. In cases where direct contact with cobalt cannot be avoided, a protective suit conforming to EN13982-1 type 5 and suitable chemical resistant gloves (EN 374) providing protection for the duration of activity (e.g. nitrile rubber (0.4 mm), chloroprene rubber (0.5 mm), butyl rubber (0.7 mm) should be worn. As a general requirement for the conducted processes: standard working clothes (long-sleeve overall), safety shoes and use of goggles.
2.2 Control of environmental exposure

Amounts used

| 20 - 75 tonnes Co/annum/site |

Frequency and duration of use/exposure

Continuous use, release of cobalt to wastewater or air is negligible.

Environment factors not influenced by risk management

Not applicable.

Other given operational conditions affecting environmental exposure

Not applicable.

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

No emissions are expected which may enter the environment.

Organisational measures to prevent/limit release from site

Please see section 8 SDS for more details.

Conditions and measures related to municipal sewage treatment plant

Not applicable.

Conditions and measures related to external treatment of waste for disposal

Suitable disposal: Wastes from onsite risk management measures and solid or liquid wastes from production, use and cleaning processes should be disposed of separately to hazardous waste incineration plants (Council Directive 2008/98/EC, Directive 2000/76/EC and BAT Reference Document 2006) or hazardous waste landfills as hazardous waste (Directive 1999/31/EC). Releases to the floor, water and soil are to be prevented. If the cobalt content of the waste is elevated enough, internal or external recovery/recycling might be considered. **Fraction of daily/annual use** expected in waste: 0.001 or 0.1%

Appropriate waste codes:

- 01 03 07*; 11 02 07*; 06 05 02*; 15 01 10*; 10 08 04; 10 10 11*; 12 01 03; 12 01 04; 06 03 13*; 06 03 15*; 10 10 03; 10 10 05*; 10 10 07*; 16 06 05; 16 08 02* 16 08 03

3. Exposure estimation and reference to its source

Occupational exposure

The risk characterisation ratio (RCR) is the quotient of the exposure estimate and the respective Derived No Effect Level (DNEL) and has to be below 1 to demonstrate a safe use. For inhalation exposure, the RCR is based on a DNEL for cobalt of 40 µg/m³.

<table>
<thead>
<tr>
<th>Workplace</th>
<th>Method used for inhalation exposure assessment</th>
<th>Inhalation exposure estimate (RCR)</th>
<th>Method used for dermal exposure assessment</th>
<th>Dermal exposure estimate (RCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of catalyst</td>
<td>analogous data</td>
<td>19 µg/m³ (0.48)</td>
<td>Since cobalt has sensitising properties, dermal exposure has to be minimised as far as technically feasible. A DNEL for dermal effects has not been derived. Thus, dermal exposure is not assessed in this exposure scenario.</td>
<td></td>
</tr>
<tr>
<td>Use of catalyst for the production of other catalysts containing cobalt compounds</td>
<td>analogous data</td>
<td>19 µg/m³ (0.48)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environmental emissions

The risk characterisation ratio (RCR) is the quotient of the local Predicted Environmental Concentration (PEC) and the respective PNEC (Predicted No Effect Concentration) and has to be below 1 to demonstrate a safe use.

4. Guidance to DU to evaluate whether he works inside the boundaries set by the ES

Occupational and Environmental exposure

The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his operational conditions and implemented risk management measures are adequate. For human health, this has to be done by showing that they limit the inhalation exposure to a level below the DNEL (given that the processes and activities in question are covered by the PROCs listed above) as given below. If measured data are not available, the DU may make use of an appropriate scaling tool such as MEASE (www.ebrc.de/mease.html) to estimate the associated exposure. For the environment, this has to be done by showing that they limit the PEC below the PNEC for the respective environmental compartment. If measured data are not available, the DU may make use of an appropriate scaling tool such as the DU-Scaling tool (http://www.arche-consulting.be/Metal-CSA-toolbox/duscaling-tool) to estimate PEC values.