1. Title

GES 33 Machining of nickel alloys and nickel-coated metal objects

<table>
<thead>
<tr>
<th>Life cycle</th>
<th>DU of Ni Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free short title</td>
<td>Machining of nickel alloys and nickel-coated metal objects</td>
</tr>
</tbody>
</table>

Systematic title based on use descriptor

- **SU:** Not relevant
- **PC:** Not relevant
- **ERC:** ERC 12a: Industrial processing of articles with abrasive techniques (low release)
- **ERC:** ERC 12b: Industrial processing of articles with abrasive techniques (high release)
- **PROC:** PROC 21: low energy manipulation of substances bound in materials and / or articles
- **PROC:** PROC 24: High (mechanical) energy work-up of substances bound in materials and/or articles
- **PROC:** PROC 0: Cleaning and maintenance

Processes, tasks, activities covered (environment)

Contributing exposure scenario ES 33.1
PROC 21: Raw materials handling
PROC 24: Machining operations
PROC 0: Cleaning and maintenance

Processes, tasks, activities covered (workers)

Handling of Ni alloys
Machining of the Ni alloys (including cutting and dry honing)
Cleaning and maintenance

Environmental Assessment Method

Estimates based on monitoring local and regional concentrations for the steel sector are used for calculation of PEC

Product characteristics

Ni is in solid form. 50-70% in concentration.

Amounts used

- **Maximum daily use at a site:** 38.4 tonnes (median days and 50th percentile tonnage)
- **Maximum annual use at a site:** ES 1, 2 & 3: 14,000 tonnes (50th percentile from the Ni RAR, 2008/2009)

Frequency and duration of use

Pattern of release to the environment: 365 days per year per site (median)

Environment factors not influenced by risk management

None

Technical conditions and measures at process level (source) to prevent release

None

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

Waste water:

For the use of Vale's downstream customers only
On-site wastewater treatment by chemical precipitation, sedimentation, filtration, electrolysis, coagulation, oiling removal, reverse osmosis or ion exchange. Off-site wastewater treatment in municipal STP for ES1 (Efficiency 40%).

ES 1 Discharge to STP: Release factor after on-site treatment based on 75th % from the Ni RAR, 2008/2009: 7.25 g Ni/T
ES 2 Direct discharge: Release factor after on-site treatment based on 75% from the Ni RAR, 2008/2009: 7.25 g Ni/T
ES 3 Marine discharge: Release factor after on-site treatment based on 75th % from the Ni RAR, 2008/2009: 7.25 g Ni/T

Air:
Treatment of air emission by use of fabric or bag filters, wet scrubbers, ceramic filters, dry or semi-dry scrubbers, electrostatic precipitation.

ES 1, 2 & 3: Release factor after on-site treatment based on 75th percentile from the Ni RAR, 2008/2009: 31.55 g Ni/T

Organizational measures to prevent/limit release from site
None

Conditions and measures related to municipal sewage treatment plant

<table>
<thead>
<tr>
<th>Municipal Sewage Treatment Plant (STP)</th>
<th>Yes for ES 1 Discharge to STP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge rate of the Municipal STP</td>
<td>2000 m³/d (default)</td>
</tr>
<tr>
<td>Incineration of the sludge of the Municipal STP</td>
<td>The sludge is applied to agricultural soil</td>
</tr>
</tbody>
</table>

Conditions and measures related to external treatment of waste for disposal

Hazardous wastes from onsite risk management measures and solid or liquid wastes from production, use and cleaning processes should be disposed of separately to hazardous waste incineration plants or hazardous waste landfills as hazardous waste. Releases to the floor, water and soil are to be prevented. If the nickel content of the waste is elevated enough, internal or external recovery/recycling might be considered.

Fraction of daily/annual use expected in waste:
- Nickel producers = 0.05 %
- DU: stainless steel and alloy steels = 0.6 %
- DU: nickel alloys, copper alloys, foundry, batteries, catalysts, chemicals, dyes and others = 0.5 %
- DU: Plating = 3%

Appropriate waste codes:
01 03 07*, 02 01 10*, 06 03 13*, 06 03 15*, 06 04 05*, 06 05 02*, 10 08 04, 10 08 08*, 10 08 09, 10 08 15*, 10 08 16, 10 10 03, 10 10 05*, 10 10 07*, 10 10 09*, 10 10 10, 10 10 11*, 11 02 07*, 12 01 03*, 12 01 04, 15 01 04*, 15 01 10*, 16 01 04*, 16 01 06*, 16 01 08*, 16 06 02*, 16 06 05, 16 08 02*, 16 08 03*, 17 04 07*, 17 04 09*, 19 09 04*, 19 10 02*, 19 12 03*

Suitable disposal: Keep separate and dispose of to either
- Hazardous landfill operated under Directive 1999/31/EC.

Conditions and measures related to external recovery of waste

Shredders pre-treating metal wastes should have a maximum release factors to air of 0.0015 after RMM and no releases to water and soil.

Qmax, local(shredding)=26kg Ni/day
(Note: This Qmax, local for shredders is based on the existing information at the moment of the update. It will be reviewed when new information is available from the BREF for shredding)

2.2 Control of workers exposure for contributing exposure scenario ES 33.1

Raw material handling

<table>
<thead>
<tr>
<th>Workers related free short title</th>
<th>Machining of nickel alloys and nickel-coated metal objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use descriptor covered</td>
<td>PROC 21: low energy manipulation of substances bound in materials and/or articles.</td>
</tr>
<tr>
<td>Processes, tasks, activities covered</td>
<td>Raw material handling operations involve manual handling of nickel alloys and</td>
</tr>
</tbody>
</table>

For the use of Vale's downstream customers only
nickel-coated objects such as feeding into machinery and removal of objects after machining operations. The objects vary in size and shape depending on the facility.

Assessment Method

Exposure estimated using a Tier 1 model

Product characteristic

Ni is in solid form. 50-70% in concentration.

Amounts used

Not relevant

Frequency and duration of use/exposure

8 hour shifts. The length of actual physical contact with raw materials depends upon the scale of machining and size of the object. Contact with raw materials may be transitory (~1 min several times throughout the shift).

Human factors not influenced by risk management

Respiration volume under conditions of use

Light to medium level work, 10 m3/d

Room size and ventilation rate

Not relevant

Area of skin contact with the substance under conditions of use

1980 cm2

Body weight

70 kg

Other given operational conditions affecting workers exposure

The extent and duration of contact with raw materials depends upon the method and scale of the machining process, ranging from very small parts lifted by hand for short periods of time throughout the shift to large parts lifted with equipment resulting in little contact. Use of coolant on machined parts also reduces potential risk by reducing dustiness. Maintain clean workplace to prevent accumulation of powders and dusts on surfaces.

Technical conditions and measures at process level (source) to prevent release

Dermal: Automation of processes should be used when appropriate to reduce dermal contact.

Technical conditions and measures to control dispersion from source towards the worker

LEV is required

Organisational measures to prevent/limit releases, dispersion and exposure

None

Conditions and measures related to personal protection, hygiene and health evaluation

Dermal: Gloves voluntary where direct contact with Ni coated surface could occur.

2.3 Control of workers exposure for contributing exposure scenario ES 33.2

Machining operations.

Workers related free short title

Machining of nickel alloys and nickel-coated metal objects

Use descriptor covered

PROC 26: Handling of solid inorganic substances at ambient temperature.

Processes, tasks, activities covered

Cutting and dry honing operations including machining using a machine tool (lathe, milling machine, CNC, etc), and grinding/polishing operations

Assessment Method

Estimation of inhalation exposure based on measured data.

Estimation of dermal exposure based on Tier 1 model.

Product characteristic

Ni is in solid form. 50-70% in concentration.

Amounts used

Not relevant

Frequency and duration of use/exposure

8 hour shifts. The duration of contact and number of contact events is dependent upon the specific machining process and level of automation. Workers are not exposed throughout the shift period.

Human factors not influenced by risk management

Respiration volume under conditions of use

Not relevant

Room size and ventilation rate

Not relevant

Area of skin contact with the substance under conditions of use

1980 cm2

Body weight

Not relevant

Other given operational conditions affecting workers exposure

Machining operations involve application of various tools (including automated, semi-automated, and manual) on a solid object to obtain a desired geometry and dimensions. The operations include cutting, drilling and honing. Machining operations that involve cutting or sawing may generate metal dust which may pose inhalation exposure risk. Minimal or no exposure is expected when the process is fully-automated. During the fully-automated operations, the machine holds the parts. In addition, operators
avoid the contact with objects during the machining operation due to physical hazard. Maintain clean workplace to prevent accumulation of powders and dusts on surfaces.

<table>
<thead>
<tr>
<th>Technical conditions and measures at process level (source) to prevent release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal: Automation of processes should be used where appropriate to reduce potential dermal contact.</td>
</tr>
<tr>
<td>Inhalation: Enclosure of machining process should be used where appropriate to reduce inhalation exposure to Ni metal.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical conditions and measures to control dispersion from source towards the worker</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEV is required for process steps involving operations that generate metal dust.</td>
</tr>
</tbody>
</table>

Organisational measures to prevent /limit releases, dispersion and exposure

None

Conditions and measures related to personal protection, hygiene and health evaluation

Inhalation: Use of RPE (FFP3, APF 20) is required when process is not fully enclosed or automated or when operator is required to enter the enclosure during operation.
Dermal: Gloves are voluntary where direct contact with Ni metal may occur.

2.4 Control of workers exposure for contributing exposure scenario ES 33.3

Cleaning and maintenance

- Workers related free short title: Machining of nickel alloys and nickel-coated metal objects
- Use descriptor covered: PROC 0: Cleaning and maintenance
- Processes, tasks, activities covered: Cleaning and maintenance
- Assessment Method: Estimation of dermal exposure based on Tier 1 model.

Product characteristic

Ni is present in solid and granular form. 50-70% in concentration.

Amounts used

Not relevant

Frequency and duration of use/exposure

8 hour shifts. Actual duration of exposure may be lower depending on duties to be carried out.

Human factors not influenced by risk management

- Respiration volume under conditions of use: Light to medium level work, 10 m³/h
- Room size and ventilation rate: Not relevant
- Area of skin contact with the substance under conditions of use: 960 cm²
- Body weight: 70 kg

Other given operational conditions affecting workers exposure

Cleaning and maintenance work of plant and premises can include scheduled regular and intermittent/occasional tasks of long and short duration which may lead to exposure to Ni metal dust. Maintain clean workplace to prevent accumulation of powders and dusts on surfaces. Oral: Good workplace hygiene practice

Technical conditions and measures at process level (source) to prevent release

None.

Technical conditions and measures to control dispersion from source towards the worker

Use vacuum, pressure washing with water, or other similar methods to remove Ni powder and dust during cleaning.

Organisational measures to prevent /limit releases, dispersion and exposure

None

Conditions and measures related to personal protection, hygiene and health evaluation

- **Inhalation:** Use of RPE (FFP3, APF 20) is required.
- **Dermal:** Gloves suitable for handling powders and other suitable protective clothing are required where direct contact with Nickel containing particles could occur

3. Exposure and risk estimation

Environment

<table>
<thead>
<tr>
<th>ERC 12a, 12b</th>
<th>Machining of nickel alloys</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Compartment</th>
<th>Unit</th>
<th>PNEC</th>
<th>PECRegional</th>
<th>Clocal</th>
<th>PEC</th>
<th>RCR</th>
<th>Methods for calculation of environmental concentrations</th>
</tr>
</thead>
</table>

For the use of Vale’s downstream customers only
For the use of Vale's downstream customers only

ES 1: Freshwater STP discharge

<table>
<thead>
<tr>
<th></th>
<th>µg Ni/L</th>
<th>mg Ni/L</th>
<th>mg Ni/kg</th>
<th>mg Ni/kg</th>
<th>mg Ni/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshwater</td>
<td>7.1</td>
<td>0.33</td>
<td>136</td>
<td>29.9</td>
<td></td>
</tr>
<tr>
<td>STP</td>
<td>2.9</td>
<td>1.00</td>
<td>33.5</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>Sediment</td>
<td>2.39</td>
<td>3.90</td>
<td>62.9</td>
<td>2.75</td>
<td></td>
</tr>
<tr>
<td>Terrestrial</td>
<td>5.29</td>
<td>59.7</td>
<td>96.4</td>
<td>18.95</td>
<td></td>
</tr>
<tr>
<td>ES 2: Freshwater direct discharge</td>
<td>0.75</td>
<td>0.083</td>
<td>0.15</td>
<td>0.63</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>µg Ni/L</th>
<th>mg Ni/L</th>
<th>mg Ni/kg</th>
<th>mg Ni/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine water</td>
<td>8.6</td>
<td>0.3</td>
<td>1.00</td>
<td>0.15</td>
</tr>
<tr>
<td>Sediment</td>
<td>136</td>
<td>33.5</td>
<td>26.2</td>
<td>16.2</td>
</tr>
<tr>
<td>Terrestrial</td>
<td>29.9</td>
<td>16.2</td>
<td>0.15</td>
<td>0.63</td>
</tr>
</tbody>
</table>

ES 3: Marine direct discharge

<table>
<thead>
<tr>
<th></th>
<th>µg Ni/L</th>
<th>mg Ni/L</th>
<th>mg Ni/kg</th>
<th>mg Ni/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshwater</td>
<td>8.6</td>
<td>0.3</td>
<td>1.00</td>
<td>0.15</td>
</tr>
<tr>
<td>Sediment</td>
<td>136</td>
<td>33.5</td>
<td>26.2</td>
<td>16.2</td>
</tr>
<tr>
<td>Terrestrial</td>
<td>29.9</td>
<td>16.2</td>
<td>0.15</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Workers

ES 33.1

PROC 21: Raw materials handling

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>DNEL</th>
<th>Exposure concentration</th>
<th>RCR</th>
<th>Methods for calculation of exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute systemic</td>
<td>mg Ni/kg/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Acute local</td>
<td>mg Ni/cm²/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Long-term systemic</td>
<td>mg Ni/kg/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Long-term local</td>
<td>mg Ni/cm²/day</td>
<td>0.035</td>
<td>0.005</td>
<td>0.14</td>
<td>Exposure estimated using MEASE for PROC 21 (massive solid, Ni present in >25% concentration, Industrial use, greater than 4 hours of operation, non-dispersive use, direct handling, intermittent exposure, no gloves).</td>
</tr>
</tbody>
</table>

Inhalation

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>DNEL</th>
<th>Exposure concentration</th>
<th>RCR</th>
<th>Methods for calculation of exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute local</td>
<td>mg Ni/m³</td>
<td>4.0</td>
<td>0.033</td>
<td>0.008</td>
<td>3 x the long-term exposure estimate.</td>
</tr>
</tbody>
</table>

ES 33.2

PROC 26: Machining operations

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>DNEL</th>
<th>Exposure concentration</th>
<th>RCR</th>
<th>Methods for calculation of exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute systemic</td>
<td>mg Ni/kg/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Acute local</td>
<td>mg Ni/cm²/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Exposure Category</td>
<td>Unit</td>
<td>Exposure Concentration</td>
<td>RCR</td>
<td>Methods for Calculation of Exposure</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Inhalation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute local</td>
<td>mg Ni/m³</td>
<td>4.0</td>
<td>0.59</td>
<td>0.148</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maximum of 5 measurements from short-term personal monitoring taken during machining operations.</td>
<td></td>
</tr>
<tr>
<td>Long-term systemic and local</td>
<td>mg Ni/m³</td>
<td>0.05</td>
<td>0.03</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maximum of 5 measurements from long-term personal monitoring taken during machining operations.</td>
<td></td>
</tr>
<tr>
<td>ES 33.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROC 0: Cleaning and maintenance</td>
<td>mg Ni/kg/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mg Ni/cm²/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute systemic</td>
<td>mg Ni/kg/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Acute local</td>
<td>mg Ni/cm²/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Long-term systemic</td>
<td>mg Ni/kg/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Long-term systemic</td>
<td>mg Ni/cm²/day</td>
<td>0.035</td>
<td>0.0005</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exposure estimated using MEASE for PROC 10 (low dustiness solid, Ni present in >25% concentration, Industrial use, greater than 4 hours of operation, non-dispersive use, non-direct handling, intermittent exposure, LEV).</td>
<td></td>
</tr>
<tr>
<td>Inhalation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute local</td>
<td>mg Ni/m³</td>
<td>4.0</td>
<td>0.33</td>
<td>0.0825</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 x the long-term exposure estimate.</td>
<td></td>
</tr>
<tr>
<td>Long-term systemic and local</td>
<td>mg Ni/m³</td>
<td>0.05</td>
<td>0.11</td>
<td>2.2 excluding RPE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By use of RPE (APF 20): 0.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exposure estimated using MEASE for PROC 10 (low dustiness solid, Ni present in >25% concentration, Industrial use, greater than 4 hours of operation, non-dispersive use, non-direct handling, intermittent exposure, LEV).</td>
<td></td>
</tr>
</tbody>
</table>

NR: Not Relevant
For the use of Vale’s downstream customers only

4. Guidance to DU to evaluate whether he works inside the boundaries set by the ES

Environment

Scaling of the release to air and water environment includes:
Refining of the release factor to air and waste water and/or and the efficiency of the air filter and wastewater treatment facility.

Scaling of the PNEC for aquatic environment by using a tiered approach for correction for bioavailability and background concentration (C_{local} approach).

Scaling of the PNEC for soil compartment by using a tiered approach for correction for bioavailability and background concentration (C_{local} approach).

Workers
Scaling considering duration and frequency of use
Collect process monitoring data with an inhalable sampler. The simultaneous use of a respirable sampler is encouraged. Use aerosol particle size information, when available, to confirm the appropriate use of the inhalable DNEL of 0.05 mg Ni/m3. Respirable fraction exposure levels should be kept below 0.01 mg Ni/m3.

For further information and guidance on exposure scenarios, available tools, and scaling options, please visit the Nickel Consortia exposure scenario library at the following link: http://www.nickelconsortia.eu/exposure-scenario-library.html

Man via Environment exposure and risk characterisation assessments for the machining of nickel alloys and nickel-coated metal objects

Inhalation is the critical exposure pathway for humans via the environment. The PEC for air at site neighbouring residential areas should be lower than the chronic inhalation DNEL for the general public of 20 ng Ni/m3 as annual average in PM$_{10}$ in order to demonstrate adequate control of risk (RCR < 1) for Man via the Environment (MvE).

Hereto a Generic safe use Exposure Scenario for MvE was developed based on the EUSES model. The MvE GES is defined as the product of tonnage (T) and emission factor to air (EF) being lower than 18000 g Ni/year. The value of 18000 g Ni/year is derived by using EUSES model to back-calculate the product of T and EF that results in a local air concentration (C_{local}) of 15.5 ng Ni/m3. The value of 15.5 is derived from the difference between the DNEL of 20 ng Ni/m3 and the EU regional background concentration ($C_{regional}$) of 4.5 ng Ni/m3 (P90 annual concentration for 2012).

Generic safe use ES for all sectors according to Tier 1 (EUSES model)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Tonnage (Ni T/year)</th>
<th>Emission factor (g Ni/T)</th>
<th>Tonnage × emission factor (g/year)</th>
<th>C_{local} (ng/m3)</th>
<th>$C_{regional}$ (ng/m3)</th>
<th>PEC$_{local}$ (ng/m3)</th>
<th>RCR = PEC/DNEL (DNEL= 20 ng/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>T</td>
<td>EF</td>
<td>T × EF < 18000</td>
<td><15.5</td>
<td>4.5*</td>
<td><20</td>
<td><1</td>
</tr>
</tbody>
</table>

* $*: EU average of country P90 annual Ni concentrations (2012)

If a site is not compliant with these conditions, meaning that the product of tonnage and emission factor is above 18000 g Ni/year, a tiered approach including site-specific modelling can be applied to demonstrate safe use