GES 10 Production of NiZn cores and solids from NiO powder

Life cycle
- **DU of NIO**: Production of NiZn cores and solids from NiO-containing powders

Free short title
- **SU**: SU 3 Industrial use
- **PC**: PC 0: Other
- **ERC**: ERC 5 Industrial use resulting in inclusion into or onto a matrix

Systematic title based on use descriptor
- **PROC**:
 - PRO-2: Used in closed continuous processes with occasional controlled exposures
 - PRO-8b: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities
 - PRO-4: Use in batch and other process (synthesis) where opportunity for exposure arises
 - PRO-9: Transfer of substance or preparation into small containers (dedicated filling line, including weighing)
 - PRO-23: Open processing and transfer operations with minerals/metals at elevated temperatures.
 - PRO-27a: Production of metal powders (hot processes)
 - PRO-0: Cleaning and maintenance

Processes, tasks, activities covered (environment)
Production of nickel-based powders:
- Powder mixing, smelting, atomisation; spraying, drying, sieving, filling in bags/drums, cleaning and maintenance

Processes, tasks, activities covered (workers)
Contributing exposure scenario ES 10.1:
- PRO-8b, PRO-9: Raw materials handling

Environmental Assessment Method
Estimates based on SPERC for Formulation of massive metal and metal powder in alloys (ARCH/EUROMETAUX, SPERC fact sheet v1.1)

Product characteristics
- **Nickel oxide (powder)**, iron oxides (Fe$_2$O$_3$) powder, and Zn oxides (ZnO)

Amounts used
- **Maximum daily use at a site**: 1.5 tonnes
- **Maximum annual use at a site**: ES 1, 2 & 3: 338 tonnes (2007)

Frequency and duration of use

Pattern of release to the environment
- **Water**: 225 days per year per site (SPERC)
- **Air**: 225 days per year per site (SPERC)

Environment factors not influenced by risk management
- **Dilution capacity, freshwater**
 - ES 1: Discharge to STP: 18,000 m3/d (Effluent STP: 2000 m3/d)
 - ES 2: Direct discharge: 18,000 m3/d (Effluent Site: 2000 m3/d)

Dilution capacity, marine
- **ES 3**: Marine discharge: 100 (default)

Other given operational conditions affecting environmental exposure
- None

Technical conditions and measures at process level (source) to prevent release
- None

Waste water:

For the use of Vale's downstream customers only
<table>
<thead>
<tr>
<th>On-site wastewater treatment by chemical precipitation, sedimentation, filtration and/or electrolysis. (Efficiency 99.9%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-site wastewater treatment in municipal STP for ES 1 (Efficiency 40%).</td>
</tr>
<tr>
<td>ES 1, 2 & 3: Release factor after on-site treatment based on SPERC for Formulation of massive metal and metal powder in alloys: 50 g Ni/T</td>
</tr>
</tbody>
</table>

Air:
Treatment of air emission by use of fabric or bag filters, wet scrubbers (Efficiency 99%).

ES 1, 2 & 3: Release factor after on-site treatment based on SPERC for Formulation of massive metal and metal powder in alloys: 50 g Ni/T

Organizational measures to prevent/limit release from site
None

Conditions and measures related to municipal sewage treatment plant

<table>
<thead>
<tr>
<th>Municipal Sewage Treatment Plant (STP)</th>
<th>Yes for ES 1 Discharge to STP</th>
</tr>
</thead>
</table>

Discharge rate of the Municipal STP
2000 m³/d (default)

Incineration of the sludge of the Municipal STP
The sludge is applied to agricultural soil

Conditions and measures related to external treatment of waste for disposal

Hazardous wastes from onsite risk management measures and solid or liquid wastes from production, use and cleaning processes should be disposed of separately to hazardous waste incineration plants or hazardous waste landfills as hazardous waste. Releases to the floor, water and soil are to be prevented. If the nickel content of the waste is elevated enough, internal or external recovery/recycling might be considered.

Fraction of daily/annual use expected in waste:

- Nickel producers = 0.05 %
- DU: stainless steel and alloy steels = 0.6 %
- DU: nickel alloys, copper alloys, foundry, batteries, catalysts, chemicals, dyes and others = 0.5 %
- DU: Plating = 3%

Appropriate waste codes:

- 01 03 07*, 02 01 10*, 06 03 13*, 06 03 15*, 06 04 05*, 06 05 02*, 10 08 04, 10 08 08*, 10 08 09, 10 08 15*, 10 08 16, 10 10 03, 10 10 05*, 10 10 07*, 10 10 09*, 10 10 10, 10 10 11*, 11 02 07*, 12 01 03*, 12 01 04, 15 01 04*, 15 01 10*, 16 01 04*, 16 01 06*, 16 01 08*, 16 06 02*, 16 06 05, 16 08 02*, 16 08 03*, 17 04 07*, 17 04 09*, 19 09 04*, 19 10 02*, 19 12 03*

Suitable disposal:
Keep separate and dispose of to either

- Hazardous landfill operated under Directive 1999/31/EC.

Conditions and measures related to external recovery of waste

Shredders pre-treating metal wastes should have a maximum release factors to air of 0.0015 after RMM and no releases to water and soil.

Q_{max}, local(shredding)=26kg Ni/day

(Note: This Q_{max}, local for shredders is based on the existing information at the moment of the update. It will be reviewed when new information is available from the BREF for shredding)

2.2 Control of workers exposure for contributing exposure scenario ES 10.1

<table>
<thead>
<tr>
<th>Raw material handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workers related free short title</td>
</tr>
<tr>
<td>Use descriptor covered</td>
</tr>
<tr>
<td>PROC 9 Transfer of substance or preparation into small containers (dedicated filling line, including weighing)</td>
</tr>
<tr>
<td>Processes, tasks, activities covered</td>
</tr>
<tr>
<td>Assessment Method</td>
</tr>
<tr>
<td>Product characteristic</td>
</tr>
</tbody>
</table>

For the use of Vale’s downstream customers only
NiO is in powder form. NiO is present at > 25%.

Amounts used
Not relevant

Frequency and duration of use/exposure
8 hour shifts, task duration up to 8 hrs/day

Human factors not influenced by risk management

<table>
<thead>
<tr>
<th>Respiration volume under conditions of use</th>
<th>Light to medium level work, 10 m^3/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room size and ventilation rate</td>
<td>Not relevant</td>
</tr>
<tr>
<td>Area of skin contact with the substance under conditions of use</td>
<td>960 cm^2</td>
</tr>
<tr>
<td>Body weight</td>
<td>70 kg</td>
</tr>
</tbody>
</table>

Other given operational conditions affecting workers exposure
Transfer of NiO powder occurs through open vessels in automated processes.

Technical conditions and measures at process level (source) to prevent release

- **Inhalation**: Open powder transfer operations are likely to give rise to significant exposures to inhalable NiO powder.
- **Dermal**: Automation of processes limits dermal contact.

Technical conditions and measures to control dispersion from source towards the worker
LEV is required for process steps that are not fully enclosed and involve NiO operations that are likely to give rise to NiO dust or fumes.

Organisational measures to prevent /limit releases, dispersion and exposure
Maintain clean workplace to prevent accumulation of powders and dusts on surfaces.

Conditions and measures related to personal protection, hygiene and health evaluation

- **Inhalation**: Use of RPE (FFP3, APF 40) is required.
- **Dermal**: Gloves suitable for handling powders and other suitable protective clothing are required where direct contact with NiO could occur.

2.3 Control of workers exposure for contributing exposure scenario ES 10.2

Production of NiZn solids.

Workers related free short title
Production of NiZn cores and solids from NiO-containing powders

Use descriptor covered
PROC 2 Used in closed continuous processes with occasional controlled exposures
PROC 4 Use in batch and other process (synthesis) where opportunity for exposure arises
PROC 23 Open processing and transfer operations with minerals/metals at elevated temperatures.
PROC 27a Production of metal powders (hot processes)

Processes, tasks, activities covered
Milling, spray, drying, pressing and sintering processes.

Assessment Method
Exposure estimated using a Tier 1 model

Product characteristic
NiO is in powder form. NiO is present at > 25% in concentration.

Amounts used
Not relevant

Frequency and duration of use/exposure
8 hour shifts; task duration maximum 4 hrs/shift

Human factors not influenced by risk management

<table>
<thead>
<tr>
<th>Respiration volume under conditions of use</th>
<th>Light to medium level work, 10 m^3/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room size and ventilation rate</td>
<td>Not relevant</td>
</tr>
<tr>
<td>Area of skin contact with the substance under conditions of use</td>
<td>1980 cm^2</td>
</tr>
<tr>
<td>Body weight</td>
<td>70 kg</td>
</tr>
</tbody>
</table>

Other given operational conditions affecting workers exposure
Milling involves producing powder from solid materials. Pressing and sintering operations involve making solid objects from metal powders at elevated temperature conditions.

Technical conditions and measures at process level (source) to prevent release

- **Inhalation**: Open transfer operations are likely to give rise to significant exposures to inhalable Ni oxide fumes and dust.
- **Dermal**: Automation of processes should be used where possible to eliminate dermal contact.

Technical conditions and measures to control dispersion from source towards the worker
LEV is required for process steps that are not fully enclosed and involve NiO operations that are likely to give rise to NiO.
dust or fumes
Organisational measures to prevent /limit releases, dispersion and exposure
Maintain clean workplace to prevent accumulation of powders and dusts on surfaces

Conditions and measures related to personal protection, hygiene and health evaluation
Inhalation: Use of RPE (FFP3, APF 20 or APF 40) dust filter masks are required.
Dermal: Gloves suitable for handling powders and other suitable protective clothing are required where direct contact with NiO could occur.

2.4 Control of workers exposure for contributing exposure scenario ES 10.3

Cleaning and maintenance
Workers related free short title Production of NiZn cores and solids from NiO-containing powders
Use descriptor covered PROC 0: Cleaning and maintenance
Processes, tasks, activities covered Cleaning and maintenance
Assessment Method Exposure estimated using a Tier 1 model
Product characteristic
NiO is present in the form of powder. NiO is present more than 25% in concentration.

Amounts used
Not relevant

Frequency and duration of use/exposure
8 hour shifts. Task duration maximum 4 hrs/shift

Human factors not influenced by risk management
Respiration volume under conditions of use Light to medium level work, 10 m³/d
Room size and ventilation rate Not relevant
Area of skin contact with the substance under conditions of use 960 cm²
Body weight 70 kg

Other given operational conditions affecting workers exposure
Cleaning and maintenance work of plant and premises can include scheduled regular and intermittent/occasional tasks of long and short duration which lead to high exposure to dust.
Maintain clean workplace to prevent accumulation of powders and dusts on surfaces.
Oral: Good workplace hygiene practice

Technical conditions and measures at process level (source) to prevent release
None.

Technical conditions and measures to control dispersion from source towards the worker
Use vacuum and pressure washing with water to remove Ni powder and dust during cleaning.

Organisational measures to prevent /limit releases, dispersion and exposure
None

Conditions and measures related to personal protection, hygiene and health evaluation
Inhalation: Use of RPE (FFP3, APF 20 or APF 40) is required
Dermal: Gloves suitable for handling powders and other suitable protective clothing are required where direct contact with NiO could occur.

3. Exposure and risk estimation

Environment
ERC 5
Use of Nickel oxide for the production of NiZn-ferrite powder

<table>
<thead>
<tr>
<th>Compartment</th>
<th>Unit</th>
<th>PNEC</th>
<th>PEC_{Regional}</th>
<th>C_{local}</th>
<th>PEC</th>
<th>RCR</th>
<th>Methods for calculation of environmental concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES 1: Freshwater STP discharge</td>
<td>Freshwater µg Ni/L</td>
<td>7.1</td>
<td>2.9</td>
<td>1.61</td>
<td>4.51</td>
<td>0.64</td>
<td>Measured values, Tier 3-RWC</td>
</tr>
<tr>
<td></td>
<td>STP mg Ni/L</td>
<td>0.33</td>
<td>-</td>
<td>-</td>
<td>0.023</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sediment mg Ni/kg</td>
<td>136</td>
<td>33.5</td>
<td>42.4</td>
<td>75.9</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terrestrial mg Ni/kg</td>
<td>29.9</td>
<td>16.2</td>
<td>0.71</td>
<td>16.91</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>ES 2: Freshwater direct discharge</td>
<td>Freshwater µg Ni/L</td>
<td>7.1</td>
<td>2.9</td>
<td>2.69</td>
<td>5.59</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sediment mg Ni/kg</td>
<td>136</td>
<td>33.5</td>
<td>70.7</td>
<td>104.2</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terrestrial mg Ni/kg</td>
<td>29.9</td>
<td>16.2</td>
<td>0.01</td>
<td>16.21</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>ES 3: Marine direct discharge</td>
<td>Freshwater µg Ni/L</td>
<td>7.1</td>
<td>2.9</td>
<td>2.69</td>
<td>5.59</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sediment mg Ni/kg</td>
<td>136</td>
<td>33.5</td>
<td>70.7</td>
<td>104.2</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terrestrial mg Ni/kg</td>
<td>29.9</td>
<td>16.2</td>
<td>0.01</td>
<td>16.21</td>
<td>0.54</td>
<td></td>
</tr>
</tbody>
</table>

For the use of Vale's downstream customers only
Marine water	µg Ni/L	8.6	0.3	0.27	0.57	0.07
Sediment	mg Ni/kg	136	16.1	7.1	23.2	0.17
Terrestrial	mg Ni/kg	29.9	16.2	0.01	16.21	0.54

Workers

ES 10.1
PROC 8b, PROC 9: Raw materials handling

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>DNEL NiO</th>
<th>Exposure concentration</th>
<th>RCR</th>
<th>Methods for calculation of exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute systemic</td>
<td>mg Ni/kg/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td>Exposure estimated using MEASE for PROC 9 (medium dustiness solid, NiO present in higher than 25% concentration, industrial use, greater than 4 hours of operation, non-dispersive use, non-direct handling, intermittent exposure, and properly designed gloves).</td>
</tr>
<tr>
<td>Acute local</td>
<td>mg Ni/cm²/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Long-term systemic</td>
<td>mg Ni/kg/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Long-term local</td>
<td>mg Ni/cm²/day</td>
<td>0.012</td>
<td>0.00005</td>
<td>0.004</td>
<td></td>
</tr>
</tbody>
</table>

Inhalation

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>DNEL NiO</th>
<th>Exposure concentration</th>
<th>RCR</th>
<th>Methods for calculation of exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute local</td>
<td>mg Ni/m³</td>
<td>3.9</td>
<td>11</td>
<td>2.8 Excluding RPE</td>
<td>10 X the long-term exposure estimate.</td>
</tr>
<tr>
<td>Long-term systemic and local</td>
<td>mg Ni/m³</td>
<td>0.05</td>
<td>1.1</td>
<td>22 Excluding RPE</td>
<td>Exposure estimated using MEASE for PROC 9 (medium dustiness solid, NiO present in higher than 25% concentration, industrial use, greater than 4 hours of operation, non-dispersive use, non-direct handling, intermittent exposure, use of LEV assumed</td>
</tr>
</tbody>
</table>

ES10.2
PROC 2, PROC 4, PROC 23, PROC 27a: Production of NiZn solids.

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>DNEL NiO</th>
<th>Exposure concentration</th>
<th>RCR</th>
<th>Methods for calculation of exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute systemic</td>
<td>mg Ni/kg/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td>Exposure estimated using MEASE for PROC 27a</td>
</tr>
<tr>
<td>Acute local</td>
<td>mg Ni/cm²/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Long-term systemic</td>
<td>mg Ni/kg/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Long-term local</td>
<td>mg Ni/cm²/day</td>
<td>0.012</td>
<td>0.00003</td>
<td>0.0025</td>
<td></td>
</tr>
</tbody>
</table>
For the use of Vale's downstream customers only

<table>
<thead>
<tr>
<th>Inhalation</th>
<th>Unit</th>
<th>DNEL NiO</th>
<th>Exposure concentration</th>
<th>RCR</th>
<th>Methods for calculation of exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute local</td>
<td>mg Ni/m³</td>
<td>3.9</td>
<td>6.6</td>
<td>1.70</td>
<td>10 X the long-term exposure estimate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term systemic and local</td>
<td>mg Ni/m³</td>
<td>0.05</td>
<td>0.66</td>
<td>13.2</td>
<td>Exposure estimated using MEASE for PROC 27a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(medium dustiness solid, NiO present in higher than 25% concentration, industrial use, less than 4 hours of operation, non-dispersive use, non-direct handling, intermittent exposure, and properly designed gloves).</td>
</tr>
</tbody>
</table>

ES 10.3

PROC 0: Cleaning and maintenance

<table>
<thead>
<tr>
<th>Dermal</th>
<th>Unit</th>
<th>DNEL NiO</th>
<th>Exposure concentration</th>
<th>RCR</th>
<th>Methods for calculation of exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute systemic</td>
<td>mg Ni/kg/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Acute local</td>
<td>mg Ni/cm²/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Long-term systemic</td>
<td>mg Ni/kg/day</td>
<td>-</td>
<td>NR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Long-term local</td>
<td>mg Ni/cm²/day</td>
<td>0.012</td>
<td>0.00005</td>
<td>0.004</td>
<td></td>
</tr>
</tbody>
</table>

Inhalation

Acute local	mg Ni/m³	3.9	1.98	0.5	3 X the long-term exposure estimate.
Long-term systemic and local	mg Ni/m³	0.05	0.66	13.2	Exposure estimated using MEASE for PROC 10
					(Medium dustiness solid, NiO present in higher than 25% concentration, industrial use, greater than 4 hours of operation, non-dispersive use, non-direct handling, intermittent exposure, and properly designed gloves).
For the use of Vale's downstream customers only

NR: Not Relevant

Acute local inhalation
DNEL based on respirable size aerosols. Equivalent inhalable fraction levels expected to be at least 3-fold higher

4. Guidance to DU to evaluate whether he works inside the boundaries set by the ES

Environment

Scaling of the release to air and water environment includes:
Refining of the release factor to air and waste water and/or and the efficiency of the air filter and wastewater treatment facility.

Scaling of the PNEC for aquatic environment by using a tiered approach for correction for bioavailability and background concentration (C_{local} approach).

Scaling of the PNEC for soil compartment by using a tiered approach for correction for bioavailability and background concentration (C_{local} approach).

Workers
Scaling considering duration and frequency of use
Collect process monitoring data with an inhalable sampler. The simultaneous use of a respirable sampler is encouraged.
Use aerosol particle size information, when available, to confirm the appropriate use of the inhalable DNEL of 0.05 mg Ni/m³. Respirable fraction exposure levels should be kept below 0.01 mg Ni/m³.

For further information and guidance on exposure scenarios, available tools, and scaling options, please visit the Nickel Consortia exposure scenario library at the following link: http://www.nickelconsortia.eu/exposure-scenario-library.html

Man via Environment exposure and risk characterisation assessments for the production of NiZn cores and solids from NiO powder

Inhalation is the critical exposure pathway for humans via the environment. The PEC for air at site neighbouring residential areas should be lower than the chronic inhalation DNEL for the general public of 20 ng Ni/m³ as annual average in PM₁₀ in order to demonstrate adequate control of risk (RCR < 1) for Man via the Environment (MvE).

Hereto a Generic safe use Exposure Scenario for MvE was developed based on the EUSES model. The MvE GES is defined as the product of tonnage (T) and emission factor to air (EF) being lower than 18000 g Ni/year. The value of 18000 g Ni/year is derived by using EUSES model to back-calculate the product of T and EF that results in a local air concentration (C_{local}) of 15.5 ng Ni/m³. The value of 15.5 is derived from the difference between the DNEL of 20 ng Ni/m³ and the EU regional background concentration (C_{regional}) of 4.5 ng Ni/m³ (P90 annual concentration for 2012).

Generic safe use ES for all sectors according to Tier 1 (EUSES model)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Tonnage (Ni T/year)</th>
<th>Emission factor (g Ni/T)</th>
<th>Tonnage × emission factor (g/year)</th>
<th>C<sub>local</sub> (ng/m<sup>3</sup>)</th>
<th>C<sub>regional</sub> (ng/m<sup>3</sup>)</th>
<th>PEC<sub>local</sub> (ng/m<sup>3</sup>)</th>
<th>RCR = PEC/DNEL (DNEL= 20 ng/m<sup>3</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>T</td>
<td>EF</td>
<td>T × EF < 18000</td>
<td><15.5</td>
<td>4.5*</td>
<td><20</td>
<td><1</td>
</tr>
</tbody>
</table>

*: EU average of country P90 annual Ni concentrations (2012)

If a site is not compliant with these conditions, meaning that the product of tonnage and emission factor is above 18000 g Ni/year, a tiered approach including site-specific modelling can be applied to demonstrate safe use

For the use of Vale's downstream customers only